
entropy

Article

Statistical Physics of Evolving Systems

Arto Annila

����������
�������

Citation: Annila, A. Statistical

Physics of Evolving Systems. Entropy

2021, 23, 1590. https://doi.org/

10.3390/e23121590

Academic Editor: Karo Michaelian

Received: 2 November 2021

Accepted: 24 November 2021

Published: 27 November 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the author.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Department of Physics, University of Helsinki, 00014 Helsinki, Finland; arto.annila@helsinki.fi;
Tel.: +358-44-204-7324

Abstract: Evolution is customarily perceived as a biological process. However, when formulated in
terms of physics, evolution is understood to entail everything. Based on the axiom of everything
comprising quanta of actions (e.g., quanta of light), statistical physics describes any system evolving
toward thermodynamic balance with its surroundings systems. Fluxes of quanta naturally select
those processes leveling out differences in energy as soon as possible. This least-time maxim results
in ubiquitous patterns (i.e., power laws, approximating sigmoidal cumulative curves of skewed
distributions, oscillations, and even the regularity of chaos). While the equation of evolution can be
written exactly, it cannot be solved exactly. Variables are inseparable since motions consume driving
forces that affect motions (and so on). Thus, evolution is inherently a non-deterministic process.
Yet, the future is not all arbitrary but teleological, the final cause being the least-time free energy
consumption itself. Eventually, trajectories are computable when the system has evolved into a state
of balance where free energy is used up altogether.

Keywords: dissipative systems; evolution; free energy; natural selection; power laws; quantum
of action

1. Introduction

Impressed by Darwin’s tenet, Boltzmann searched for physical laws underlying
evolution. However, as an atomist, he did not make any profound difference between
animate and inanimate but reasoned evolution of every kind following the same law. As the
renowned passage reveals, Boltzmann recognized entropy and free energy as the concepts
whose changes characterize evolution, “The general struggle for existence of living beings
is therefore not a fight for energy, which is plentiful in the form of heat, unfortunately
untransformably, in every body. Rather, it is a struggle for entropy that becomes available
through the flow of energy from the hot sun to the cold earth” [1].

Despite Boltzmann’s insight [2,3], the relationship between increasing entropy and
decreasing free energy has remained obscure [4]. Early on, Carnot understood that a
change in entropy, dS = δQ/T, follows from a change in energy δQ per temperature T (i.e.,
average energy when multiplied with Boltzmann constant kB). Yet, in the quest for the
microscopic formulation, Clausius, Helmholtz, and Boltzmann equated entropy, S = kBlnW,
with disorder enumerating the so-called microstates, W (i.e., energetically indistinguishable
constituent configurations) [5]. Moreover, Schrödinger stating that life feeds on negative
entropy led to a worsened confusion [6].

Boltzmann posited statistical mechanics to be the theory underlying thermodynamics
but acknowledged failing in formulating it [7]. His equation for entropy is a condition
of thermal equilibrium rather than an equation of state [8–10], and hence is limited to
closed and isolated systems. Even so, it paved the way to modern near-equilibrium
methods [11–13]. So, these models, too, fall short in describing the grand changes of open
systems. In essence, substantial fluxes of matter and radiation, typical of growing organisms
and their populations, have remained unformulated in theoretical terms until our time.
Thus, instead of being a mere mathematical model of data [14], a theory of evolution ought
to be placed on an axiom to be falsifiable with the data it aims to explain [15,16].
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Such a comprehensive theory is not inconceivable. On the contrary, it seems even in-
dispensable since data is surprisingly similar across scales and scopes. As noted already by
Galilei [17], Snell [18], Thompson [19], and Huxley [20], and in our time vindicated by com-
plex system science [21], data of various kinds closely follow power laws. In other words,
charts without legends and labels give us no clue whether data are about molecules, genes,
organisms, or populations [22]. This isometric scaling, also known as allometry [23,24], re-
sults from a chain of events where each stage of development follows from all the previous
steps (i.e., evolution).

The universality of patterns, including sigmoidal curves, skewed distributions, loga-
rithmic spirals, and even regularity of chaos [22,25,26], suggests that animate and inanimate
are indeed basically one and the same. Thus, the evolution of a species on an island should
not be theorized to be any different (e.g., from the cooling of tea in a cup) [27]. As Boltz-
mann surmised, difference, be it in temperature, chemical energy, or another form of
energy, diminishes with time (in fact, in the least time). Therefore, all kinds of systems
evolve similarly. They all are on their way to attaining thermodynamic balance with their
surrounding systems in the least time.

In setting up statistical physics of open, evolving systems of any kind, let us employ
the old atomistic axiom, also favored by Boltzmann. Of course, by today, it is known that
atoms comprise constituents, but the ultimate constituent is not generally known.

Considering that evolving systems absorb and emit photons in changes of state, let us
assume, as Newton implied [28], that everything comprises photons. Despite the logical
consistency, the all-inclusive axiom, reworded by Lewis [29], may seem unwarranted since
the number of photons is not conserved in calculations employing quantum mechanics
creation and annihilation operators. While effective theories serve for calculating, calcu-
lations themselves do not refute Lewis’ postulate. The number of light quanta does not
have to be non-conserved even though photons appear out of the vacuum and disappear
into it. Namely, it all depends on what the vacuum is. The photons could appear out
from the vacuum comprising photons in pairs with opposite phases, or the photons could
disappear into it by pairing anew [30,31]. The inference agrees, for example, with the
dynamic Casimir effect, where visible photons emerge out of the vacuum two at a time [32].
Also, the degeneracy of two for each energy level in the Bose-Einstein statistics implies a
paired-photon substance. Since there is no compelling experimental evidence against the
photon being the fundamental constituent, let us proceed from this axiom to derive the
state equation.

2. Materials and Methods

In a complete theory, every element of reality has a counterpart [33]. Accordingly, any
system can be described by the same theory, assuming that the fundamental elements (i.e.,
the quanta) embody everything. The atomistic axiom implies that one and the same state
equation accounts for all systems, and its derivative, the equation of motion, accounts for
the evolution of any system.

2.1. The State Equation

The scale-free state equation can be deduced from the general diagram of energy levels
of a system (Figure 1) in terms of probability, P, the central concept of statistical mechan-
ics [3,34,35]. The probability of any one entity, indexed with j, 1Pj = φ1φ2φ3 . . . = ∏kφk, as a
product, ∏k, of substrates, labeled with k, guarantees that if a k-substrate is absent entirely,
i.e., φk = 0, also 1Pj = 0. For example, a given protein in a cellular system could not be
present if any of its constituents, such as an essential amino acid, was absent altogether.
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To conclude, the total probability, P, of the system is the product, Πj, over Pj 
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where the factor, φk = Nkexp[(−ΔGjk + iΔQjk)/kBT], encompasses the substrates, Nk, each of 
free energy, −ΔGjk + iΔQjk, per, kBT, the average energy. When fluxes of quanta perturb kBT 
only a little, the system changes gradually, as if in a continuous manner. Then, an energy 
difference can be approximated with the selfsimilar exponential function dex/dt = ex [37]. 
The energy difference, ΔGjk, between the substrate, labeled with k, and the product, la-
beled with j, is spanned by ΔQjk, such as insolation, from the surroundings. The quotient, 
i, distinguishing vector potential from the scalar one, indicates that the system is open for 
the flows of quanta that couple to a jk-transformation. For example, insolation makes pho-
tosynthesis happen and dissipation enables metabolism. 

 
Figure 1. Any system can be depicted by the same general energy level diagram, assuming every-
thing comprising quanta. Entities, in numbers, Nk, with energy, Gk, are on the same level. Their mu-
tual exchange (bow arrows) brings about no change, so the average energy, kBT, does not change 
either. However, when quanta from surroundings with energy, ΔQjk, (wavy arrows) couple to trans-
formations from starting materials, Nk, into products, Nj, the entities move (horizontal arrows) from 
one level to another. Through transformations, the system and its surroundings move toward mu-
tual thermodynamic balance. The system evolves toward higher average energy when the sur-
roundings are higher in energy and vice versa. The logarithm of the sigmoid cumulative probability, 
P, distribution curve (dashed line) is entropy, S = kBlnP. On the logarithm-logarithm scale (inset), S 
vs. (chemical) potential energy, μ, closely follows a power law (i.e., a straight line). 

The equation of state (Equation (1)) is the principal result of statistical physics of 
evolving systems. Its logarithm (ln) is the familiar additive, Σ, measure of a state, known 
as entropy, S, when multiplied by kB 

Figure 1. Any system can be depicted by the same general energy level diagram, assuming every-
thing comprising quanta. Entities, in numbers, Nk, with energy, Gk, are on the same level. Their
mutual exchange (bow arrows) brings about no change, so the average energy, kBT, does not change
either. However, when quanta from surroundings with energy, ∆Qjk, (wavy arrows) couple to
transformations from starting materials, Nk, into products, Nj, the entities move (horizontal arrows)
from one level to another. Through transformations, the system and its surroundings move toward
mutual thermodynamic balance. The system evolves toward higher average energy when the sur-
roundings are higher in energy and vice versa. The logarithm of the sigmoid cumulative probability,
P, distribution curve (dashed line) is entropy, S = kBlnP. On the logarithm-logarithm scale (inset),
S vs. (chemical) potential energy, µ, closely follows a power law (i.e., a straight line).

The success of statical mechanics stems from the comprehensiveness of the underlying
axiom. Irrespective of the complexity, it is not necessary to explicitly know the components,
k, in the product, ∏k, to count them all since all entities ultimately comprise the same
basic constituents.

When the system holds interchangeable entities in numbers, Nj, say, a cellular system
holds many copies of a protein, the population probability, Pj = [1Pj][1Pj][1Pj] . . . /Nj! =
[1Pj]Nj/Nj! is 1Pj in power Nj. Once more, the product guarantees that if any one entity
is absent entirely, i.e., 1Pj = 0, also Pj = 0. Since the order among identical entities makes
no difference, indistinguishable configurations (i.e., microstates) should not be counted as
different states unless truly independent [36]. Hence, Pj is scaled by the permutations, Nj!

To conclude, the total probability, P, of the system is the product, ∏j, over Pj

P =∏
j

Pj = ∏
j

[
∏

k
φk

]Nj

/Nj! , (1)

where the factor, φk = Nkexp[(−∆Gjk + i∆Qjk)/kBT], encompasses the substrates, Nk, each of
free energy,−∆Gjk + i∆Qjk, per, kBT, the average energy. When fluxes of quanta perturb kBT
only a little, the system changes gradually, as if in a continuous manner. Then, an energy
difference can be approximated with the selfsimilar exponential function dex/dt = ex [37].
The energy difference, ∆Gjk, between the substrate, labeled with k, and the product, labeled
with j, is spanned by ∆Qjk, such as insolation, from the surroundings. The quotient, i,
distinguishing vector potential from the scalar one, indicates that the system is open for
the flows of quanta that couple to a jk-transformation. For example, insolation makes
photosynthesis happen and dissipation enables metabolism.
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The equation of state (Equation (1)) is the principal result of statistical physics of
evolving systems. Its logarithm (ln) is the familiar additive, Σ, measure of a state, known
as entropy, S, when multiplied by kB

S = kBln P = kB ∑
j

ln Pj ≈
1
T ∑

jk
Nj

(
−∆µjk+i∆Qjk+kBT

)
(2)

where µk = kBTln[Nkexp(Gk/kBT)] is the potential bound in the k substrate, µj is the potential
bound in the j product, and their difference is ∆µjk = µj − µk. The form of chemical potential
qualifies for any bound potential, postulating everything comprising the same fundamental
entities, the quanta. The surrounding quanta, carrying energy ∆Qjk, that couple to the
jk-transformation contribute to the system’s energetic status. The approximation sign
stands for Stirling’s approximation for factorial, lnNj! ≈ Nj lnNj − Nj, in Equation (2). It is
excellent for a many-body system.

It is worth emphasizing that here entropy does not measure disorder. Instead, the
system’s total energy, TS, includes the system-bound, ΣNjkBT, and free, ΣNj(−∆µjk + i∆Qjk)
energy. Thus, the system keeps changing until free energy is consumed altogether. Only
then does the textbook form of entropy, S = kBΣNj, apply.

2.2. The Evolutionary Equation

For a statistical system, the step-by-step changes in Nj can be given to a good approxi-
mation by continuous differentials, dNj. Thus, the total energy of the system, TS, evolves
with time, t,

T
dS
dt

= T ∑
j

dS
dN j

dN j

dt
= ∑

jk

dN j

dt

(
−∆µjk+i∆Qjk

)
(3)

when free energy, −∆µjk + i∆Qjk, is consumed in transformations from Nk to Nj or vice
versa. The average energy, kBT, is not explicitly differentiated using the chain rule since its
variation contains variations in dS.

The change in a population, Nj,

dN j

dt
=

1
kBT ∑

k
σjk

(
−∆µjk+i∆Qjk

)
(4)

is proportional to free energy by mechanistic factors, σjk > 0 [12]. A factor, σjk, such as a
catalyst, facilitates the jk-transformation from Nk to Nj, and the other way around. The
natural process naturally selects the most efficient mechanisms of free energy consumption
to attain balance in the least time. In a sense, the various processes by Equation (4) compete
for the flows of quanta. Thus, the least-time principle can be recognized as the long-yearned
teleological imperative of evolution, the final cause [38]. The quest for attaining balance in
the least time explains, for example, the proliferation of insolation-absorbing compounds
during abiogenesis [39,40].

From the thermodynamic perspective, life is a response of matter on earth to sun-
light [41]. Over the eons, the bound form of energy has increased as organic material has
been deposited in the curst. Conversely, interfering with the global quest for balance by con-
suming fossil fuels and disrupting energy transduction mechanisms by deforestation [42]
comes with catastrophic consequences.

As can be proved by squaring the free energy terms in Equations (3) and (4), entropy
cannot decrease, dS≥ 0, not even momentarily or at the cost of an increase elsewhere. Note,
when squaring, that the jk-basis is orthogonal. This reasoning about dS ≥ 0 follows from
the conservation of quanta. The quantized fluxes level out energy differences between the
system and its surroundings. The inference is supported by empirical evidence. Both living
and non-living systems display the same patterns [22,25,26].

The courses of evolution, development, differentiation (i.e., transformations of any
kind) cannot be computed, for variables in Equations (3) and (4) cannot be separated. Yet,
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simulations according to Equation (4) demonstrate that the least-time processes produce
standards, such as chirality consensus, nearly lognormal distributions, sigmoidal growth
curves, allometric scaling, oscillations, and regularity of chaos [27,42–44].

2.3. The Continuous Equation of Motion

Many quantized processes seem almost like continuous motions. Thus, expressing
the scalar potential µj = (∂U/∂Nj) and radiation Qj = (∂Q/∂Nj) in terms of continuous
potentials U and Q serves to cast Equation (3) to

T
dS
dt

= ∑
jk

dN j

dt

(
− ∂U

∂Nj
+i

∂Q
∂Nj

)
= −∂U

∂t
+i

∂Q
∂t

=
d
dt

2K (5)

as dNj depends on ∂/∂Nj while being independent of ∂/∂Nk. Since fluxes of photons of
Q transform U and K, TdS corresponds to the change in kinetic energy d2K. In other words,
energy and period, as well as momentum and wavelength, change when the quanta settle
on new trajectories. For example, when an electron settles on a higher orbit, the Coulomb
field in an atom changes.

The integral form of the continuous equation of motion (Equation (5)) leads to Mau-
pertuis’ principle of least action by requiring vanishing variation of the integrand of∫

p·dx =
∫

2Kdt that totals quanta with momenta, p, on paths, x, or equivalently with ki-
netic energy, 2K, on periods, t [45]. The free-energy variational principle describes complex
processes [46], such as morphogenesis [47]. Moreover, the revived interest in the Mau-
pertuis action has led to recognizing causality as its partial derivative of along the spatial
coordinate with the smallest momentum change along the trajectory [48] and connec-
tion between time and thermodynamics for equilibrium phenomena and its extension to
irreversible processes assuming local equilibrium [49].

In contrast to the closed, stationary Lagrangian form, the original Maupertuis form is
open for evolution. Mathematically speaking, the dissipation, ∂Q/∂t 6= 0, moves integration
limits while integrating since forces change motions, changing the forces, and so on. The
inseparable variables make it impossible to solve the evolutionary equation. Thus, the
future remains non-determined. However, the least-time maxim distinguishes evolution
from an (illusory) indeterminate (i.e., random) motion.

The equation of motion (Equation (5)) can also be derived from Newton’s second law

F =
d
dt

p= ma + v
dm
dt
| vv·F = v· d

dt
p =

dx
dt
·ma + v·v dm

dt
= −dU

dt
+i

v2

c2
dE
dt

= −dU
dt

+i
dQ
dt

(6)

by multiplying the change, dp/dt, in momentum, p = mv, with velocity, v, and de-
composing kinetic energy, 2K = v · p = ∑vjmvk, that vanishes for j 6= k, and taking
into account that dv/dt · p = 0 since acceleration a = dv/dt ⊥ v. The change in mass,
dm/dt = dE/c2dt = dQ/v2dt, denotes, in geometric terms, changes in the quantized trajec-
tories as they open up and dissipate quanta into the surroundings. Concurrently to any
state transformation (e.g., nuclear, chemical reaction, also mass changes, dm). Accordingly,
masses change until the system develops into a steady state. Mass-energy equivalence,
E = mc2, the relativistic formula, is understood here to follow from the action, Et = mc2t = px.
Thus, the 2nd law of thermodynamics, the original (Maupertuis’) principle of least action,
and the complete form of Newton’s second law of motion are the same law.

Eventually, the system reaches balance in its surroundings. As the net flows between
the system and its surroundings have died out, the evolutionary equation (Equation (6))
reduces to the integrable virial theorem, 2K + U = 0. The steady-state system totaling n
quanta with kinetic energy, 2K, says by Noether’s theorem, 2Kt = nh, that the quanta orbit
within characteristic periods, t. Time invariance corresponds to constant energy. Symmetry
remains unbroken.
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3. Results

Since statistical physics of open evolving systems is based on an axiom, data in its
entirety is free to verify and falsify this many-body theory. As it turns out, data of statistical
systems follow closely but not precisely ubiquitous power laws. Most notably, data
deviate both at low and high ends. This implies that the power law is an approximation
of a sigmoid curve that accumulates from a skewed, nearly lognormal distribution [50].
These characteristics can be proven to result from Equations (3)–(6) through mathematical
analysis [51].

3.1. The Ubiquitous Patterns

The characteristic S-shape of a growth curve can be seen from Equation (4). In the
beginning, there is a wealth of resources, i.e., free energy for growth. So, we may assume
that mechanisms, Σkσjk, limit free energy, −∆µjk + i∆Qjk, consumption, and define

d
dt

1
kBT ∑

k

(
−∆µjk+i∆Qjk

)
=

dN j

dt
d

dN j

1
kBT ∑

k

(
−∆µjk+i∆Qjk

)
≈∑

k
σjk⇒

dN j

dt
= ∑

k
σjk Nj, (7)

using dµj/dNj = d(Gj + kBT lnNj)/dNj = kBT/Nj, since µk, Qj and Qk have no explicit but only
a stoichiometric dependence on Nj. The initial growth by Equation (7) is approximately
exponential since initially, the amount of free energy seems as if infinite. In turn, when the
free energy dwindles down, the final growth decreases slowly, almost exponentially.

The growth between the initial and final phase trends a power law. Expressing Nj as
the product of the basic elements, N1, and using the atomistic axiom, Nj = ∏kφk = αjN1

j,
where αj = ∏mnexp[ΣNj(−∆µmn + i∆Qmn)/kBT] contains the free energy terms that force
the assembly of Nj from N1 through various mn-transformations, the change,

dN j

dt
= jαjN

j−1
1

dN1

dt
= j

Nj

N1

dN1

dt
⇒

dN j

Nj
= j

dN1

N1
, (8)

when integrated, follows a power law lnNj = j lnN1 + constant. The form is familiar from
various self-organizing processes, including technological ones such as the one leading to
Moore’s law [52]. The power law in the continuous form, d lnp = d lnv + d lnm, follows
from dividing Newton’s second law of motion by momentum, p.

When the assumption of a nearly constant change in free energy does not hold, we
may model the change by adding the term −βNj to Equation (7)

dN j

Nj
≈
(

∑
k

σjk − βN j

)
⇒ Nj(t)= N j(to)

(
∑
k

σjk − βN j(to)

)
, (9)

where the population, Nj(to), at an instant, to, determines the population, Nj(t), at a later
instant, t. By this model [53], evolution is almost predictable when the change in free energy
compared with average energy, |(−∆µjk + i∆Qjk)/kBT| << 1, is small [51]. And when not,
oscillations, bifurcations, and chaos occur, exemplified by soaring and sinking populations.

Logarithmic, exponential, and truncated distributions and their power-law-like cu-
mulative distribution functions are mathematical models of the physical processes given
by Equations (3) and (4). The renowned deterministic models mostly tally data, but they
do not explain phenomena since, in reality, the chain of events is fundamentally unpre-
dictable. However, non-determinism does not follow from the complexity of a system or
ambiguity in its initial conditions but from mutual dependencies. Equations (3)–(6) cannot
be solved, except at balance, since the variables cannot be separated. Everything depends
on everything else. The cherished assumption ceteris paribus does not hold.

When the system evolves gradually, the change in energy is small compared with
the average energy, |(−∆µjk + i∆Qjk)/kBT| << 1. As the variation, n, is small, n << j,
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around a representative, mean, or an average factor, φj, the distribution of factors, given in
logarithmic terms, lnφj = j lnφ1, of the elemental factor, φ1,

ln φj−n...j+n = ln φj + ∑
n

ln φ1 , (10)

is approximately logarithmic [54,55]. The typical form, j, can be recognized in each member
within the distribution j ± n. For example, all sized birds look like a bird and not fish.
Accordingly, if the weights of birds and fish were plotted on the same graph, we would see
two distributions, namely one about a typical bird and the other about an average fish.

Spirals, such as shells, flower beds, whirls, cyclones, and galaxies, are also approximately
lognormal distributions in polar coordinates (i.e., energetically optimal shapes) [51,56].

3.2. Non-Deterministic Motion

The non-deterministic nature of evolution is apparent from Equation (4). The change,
dNj, cannot be separated from its driving force since ∆µjk is a function of Nj. As Equation
(3) cannot be solved, the course of events is, so to say, non-deterministic, non-computable,
and intractable [57]. This conclusion contradicts the common misconception that evolution
would be a random (i.e., an indeterministic process). A mutation in a gene may appear such
as an arbitrary event. However, it also has its cause, such as natural background radiation
or exposure to a chemical agent. The significance of a mutation depends on the free energy
it may unleash when the gene is expressed. Thus, it is the consumption of free energy, not
the facilitating mutations, that drives evolution. In short, evolution follows forces.

While evolution is teleological in the least-time sense, the interdependency among
forces and changes in motion excludes evolution targeting preset goals. Instead, at every
step, flows of quanta choose the paths for the least-time free energy consumption. Eventu-
ally, a thermodynamic balance will be attained, but the state cannot be predicted from the
initial condition. Moreover, the balance may be only temporary. When new forms of free
energy appear or new means to consume free energy emerge, the system evolves again.
For example, the invasion of a new species and the invention of technology cause changes.

Evolution as a non-deterministic thermodynamic process also makes it clear why
hierarchical structures reappear after catastrophes, not exactly identical but closely similar
to the demolished ones [27]. Moreover, as everything depends on everything else, the
more versatile thermodynamic systems are, the more resilient they are to changes. Con-
versely, systems poor in diversity, say, arctic ecosystems and small economic systems, are
susceptible to major changes.

4. Discussion

Statistical physics of open systems concurs with the tradition of theorizing and con-
trasts with the trend of modeling. In ancient Greek, theōría meant viewing, considering,
examining from a viewpoint. From the axiomatic perspective, it only remains to check
whether observations match the projection. If not, the theory is false. However, unlike an
effective theory (i.e., a mathematical model), the axiomatic theory cannot be fixed and fitted
to the data. Instead, a new axiom must be put in place in hopes of a better theory making
sense of what is seen. Consequently, only comprehensive axioms, such as the atomistic
axiom underlying a complete theory, are of interest and impact (e.g., as we struggle to
transform our way of life for sustainable subsistence) [58].

Statistical physics of open systems deserves benchmarking against Kuhn’s five criteria
of a sound scientific theory [59]. First, the theory must be accurate within its domain. The
results should correspond to what is observed and measured. Clearly, the atomistic axiom
defines the domain of everything that there is. Accordingly, it may take a considerable
effort to examine nature from its tiniest elements to its enormous extents before finding a
case that proves the theory false.

Second, the theory must be consistent not only in itself but in relation to the prevail-
ing theories. As shown above, statistical physics of open systems restates the complete
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Newton’s second law and the original principle of least action. However, the correspon-
dence with modern physics is an issue. Yet, the comparison between the axiomatic theory
of statistical physics and the effective theory of the standard model of particles is not
straightforward. Unlike the traditional theory, the instrumental tenet aims to match rather
than explain data. The standard model of cosmology is also an effective theory as it is
parametrized with dark matter and dark energy to match with observations. However, the
axiom general relativity that the laws of physics are the same for all observers, regardless
of their motion, is consistent with the atomistic axiom of statistical physics.

Third, the theory should have a broad scope. It should explain much more than its
first objective. Here the first objective was to derive the theory of evolution, customarily
understood as a theory of biology, from physics. However, the scope of the theory expanded
beyond the first objective as it was then realized that statistical physics of open systems by
its universal axiom accounts for the evolution of any system.

Fourth, the theory should be simple and bring order to phenomena that otherwise
would be individually isolated and, as a set, confused. Indeed, the statistical physics of
open systems puts biological processes into the unity of all processes and brings order
among all kinds of processes.

Fifth, the theory must be fruitful in revealing new phenomena and unknown connec-
tions among those already known. Indeed, it is eye-opening that the ubiquitous patterns
(i.e., skewed distributions, sigmoidal cumulative curves, oscillations, and even chaos [60])
are manifestations of the universal imperative to consume free energy in the least time.

While this superficial inspection at hand seems approving and promising, it is worth
recalling that Kuhn deemed it demanding to evaluate a theory’s accuracy, consistency,
scope, simplicity, and fruitfulness. For instance, the sun-centered model was at odds
with what was once thought about why stones fall, how water pumps operate, and how
clouds move. So, let us recall that in the foreword of Novum Organum, Bacon urged to be
open-minded for unconventional reasoning since conventions only appear as incontestable
truths [61].
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